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ABSTRACT The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific
synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans. It
is composed of sequential steps that are governed by . 3000 chemical connections. Here, we show that heparan sulfates (HS) play a
role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS
3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously
and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic
accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of
the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein
NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and
extracellular matrix components act together in the formation of synaptic connections.
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BEHAVIORS are the result of a combination of signaling
pathwayscoordinatedatvarious cellular and tissue levels.

Male mating is the most complex behavior of Caenorhabditis
elegans. This behavior is governed by 144 neurons and 64
muscles in the posterior part of the male worm that are ex-
tensively interconnected to each other resulting in �3200
connected cell pairs (Jarrell et al. 2012). However, how these
synapses are determined so that they are formed in reproducible
patterns is still unknown. One hypothesis is the chemo-affinity
hypothesis proposed by Sperry (1963), which postulates that
matching pairs of cell adhesion molecules between the presyn-
aptic and postsynaptic neurons will promote synaptogenesis.
These interactions occur in the context of the surrounding

extracellular matrix (ECM), the influence of which needs to
be taken into account.

The ECM plays an important role in the development of
the nervous system (Porcionatto 2006; Zimmermann and
Dours-Zimmermann 2008; Myers et al. 2011). Heparan sul-
fate (HS) proteoglycans (HSPGs) are components of the ECM
that function in several processes such as neurogenesis, cell
migration, axon guidance, dendritic branching, and synapse
formation (Bernfield et al. 1999; Bülow and Hobert 2006;
Poulain and Yost 2015; Saied-Santiago and Bülow 2018).
HSPGs exist in three different forms: (1) transmembrane pro-
teins such as the syndecans; (2) glycosylphosphatidylinositol
(GPI)-anchored proteins such as the glypicans; and (3) secreted
forms such as perlecan, agrin, and collagen XVIII (Bernfield
et al. 1999; Bülow andHobert 2006; Poulain and Yost 2015). A
special feature of HSPGs is the HS chains that are attached to
the core proteins. These HS chains are linear glycosaminogly-
can polysaccharides of variable length (n=50–150) composed
of hexuronic acid and glucosamine repeat units. The polysac-
charide chains are substantially modified, including by deace-
tylation, sulfation, and epimerization. The formation of these
modifications is catalyzed by specific HS modification enzymes
(HSMEs) (Lindahl and Li 2009). Deacetylation is mediated by
N-deacetylase/N-sulfotransferase (Ndst) enzymes, sulfation is
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mediated by HS 2-O, HS 6-O, HS 3-O sulfotransferases as well
as the Ndst, and epimerization is catalyzed by the HS C-5 glu-
curonyl-epimerase. These modifications form domains of dis-
tinctly modified HSs within the HS chains that serve as binding
sites for ligands and receptors. In thisway, theymediate specific
biological functions, such as cell migration and axon guidance
(Bennett et al. 1997; Pratt et al. 2006; Matsumoto et al. 2007;
Kastenhuber et al. 2009). Some of these domains may be con-
served throughout evolution (Attreed et al. 2016).

The role of HSPGs in synapse formation and function is not
well understood. In vertebrates, theHSPGagrin plays a role in
the development of neuromuscular junctions by promoting
the aggregation of acetylcholine receptors in skeletal muscle
and activating the receptor tyrosine kinase Musk on the muscle
surface (Glass et al. 1996). The presence of agrin has also been
detected in the central nervous system, where the suppression
of agrin expression in cultured hippocampal neurons and in
the cortex of mice results in the formation of fewer synapses
(Ferreira 1999; Bose et al. 2000; Ksiazek et al. 2007). The
intracellular domains of syndecan-2 interact with various cel-
lular components to promote filopodia formation and induce
dendritic spine formation (Ethell et al. 2001; Lin et al. 2007).
In Drosophila, the extracellular and cytoplasmic domains of
syndecan act postsynaptically to regulate synapse growth of
neuromuscular junctions (Nguyen et al. 2016). Glypicans
have also been implicated in the formation of synapses.
Glypican-4 (Gpc4) and glypican-6 (Gpc6) secretion from as-
trocytes is sufficient to induce functional synapses in retinal
ganglion cells, while their elimination reduces the postsyn-
aptic activity induced by these molecules (Allen et al. 2012).
In addition, Gpc4 interaction with a postsynaptic leucine-rich
repeat transmembrane protein (LRRTM) Lrrtm4 is required
to induce excitatory synapse formation (de Wit et al. 2013).
This interaction is mediated by an HS-dependent interaction
between Gpc4 and the receptor protein tyrosine phosphatase
PTPs in the presynaptic site (Ko et al. 2015). Additional studies
have demonstrated the involvement of HS chain modifications
in the process of synapse formation. An RNAi (RNA interfer-
ence) screen in Drosophila, specifically directed to glycan
genes, revealed that the functionally paired HS 6-O sulfotrans-
ferase (hs6st) and HS 6-O endosulfatase (sulf1) have opposite
effects in synaptic functional development of neuromuscular
junctions (Dani et al. 2012). In mammals, the elimination of
Ext1, a gene encoding an enzyme essential for HS synthesis,
causes the attenuation of excitatory synaptic transmission in
amygdala pyramidal neurons and results in autism-like behav-
ioral deficits (Irie et al. 2012).

Here, we investigated the role of HS molecules in the
development and function of the posterior male nervous
system in C. elegans. We show that loss of the HS 3-O sulfo-
transferase HST-3.1 and the glypicans LON-2/glypican and
GPN-1/glypican result in defects in response to hermaphro-
dite contact during male mating behavior, suggesting that
3-O-sulfatedHS attached to LON-2/glypican andGPN-1/glypican
is required for this process. In addition, HS molecules and their
modifications, with the exception of 3-O sulfation, were required

for the dorsoventral axonal migration of male-specific sen-
sory neurons that are essential for male mating behavior
and function. Loss of 3-O sulfation in the postsynaptic cell
resulted in accumulation of a presynaptic vesicle marker in
the presynaptic cell of a mating circuit. Further, synapse
formation between male-specific sensory neurons and tar-
get interneurons was disrupted, possibly accounting for the
observed behavioral defect.

Materials and Methods

C. elegans strains and imaging

All strainsweremaintained using standardmethods (Brenner
1974). All strains used contain the him-5(e1490) mutation
on chromosome V to increase the male population (Brover-
man 1994). We refer to him-5 as control worms. All experi-
ments were performed at 20�, and animals were scored as
1-day-old adults unless otherwise specified. The strains and
mutant alleles used in this study are listed in the supplemental
experimental procedures. Fluorescent images were captured in
live C. elegans using a Plan-Apochromat 403/1.4 or 633/1.4
objective on a Zeiss Axioimager Z1 Apotome (Zeiss [Carl Zeiss],
Thornwood, NY). Worms were immobilized using 10 mM so-
dium azide and z-stacks were collected. Maximum intensity
projections were used for further analysis.

Molecular biology and transgenesis

Toassembletissue-specificexpressionconstructsusedforrescue
experiments, the hst-3.1 cDNAwas cloned under control of the
following promoters: hypodermal Pdpy-7 (Gilleard et al. 1997),
body wall muscle Pmyo-3 (Okkema et al. 1993), pan-neuronal
Prgef-1 (Altun-Gultekin et al. 2001), the B-type ray neurons
Ppkd-2 (Barr andSternberg 1999), EF interneurons Pnlg-1 (this
study), dopaminergic neurons Pcat-2 (Lints and Emmons
1999), PVY and PVX neurons Pnlp-14 (Sherlekar et al. 2013),
AVA neuron Pnmr-1 (Sherlekar et al. 2013), glutamatergic
neurons Peat-4 (Lee et al. 1999), serotonergic neurons Ptph-1
(Sze et al.2000), andg-aminobutyric acid (GABA)ergic neurons
Punc-47 (Gendrel et al. 2016). All plasmids contained the unc-
54 39-UTR. Constructs for tissue-specific rescue experiments of
the hst-3.1/HS 3-O-sulfotransferase male mating response de-
fect were injected at 5 ng/ml together with Pceh-22::GFP or
Punc-122::GFP as injection markers at 50 ng/ml. For details
see the supplemental experimental procedures.

Behavioral scoring

Response to hermaphrodite contact assays were performed
with 1-day-old adult, virgin males isolated at the L4 stage.
Male worms to be tested were placed on a 10-mm food lawn
with ten unc-31(e169) hermaphrodites. The mating behavior
of the males was observed for 5 min and annotations were
made every time amale responded to hermaphrodite contact.
For this assay, a male is considered to have responded to
contact if, after mate contact, it starts backward locomotion,
scanning the hermaphrodite body followed by turning behav-
ior. Males that failed to respond to contact did not start
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backward locomotion to scan the hermaphrodite body, or
they lost tail contact right after starting the backward loco-
motion. The quantitation of response to contact was per-
formed by dividing the number of males with response by
the total number of male tested [response % = (number of
males with response / total number of males evaluated) 3
100. For statistical analysis, we performed a Student’s t-test
to calculate the significant difference between control worms
(him-5) and mutant worms (in a him-5 background).

For the mating potency assay, we placed one virgin young
adult male worm with one pha-1 mutant hermaphrodite on a
10-mm food lawn for 4 hr. We scored a total of 50 male worms
(50 plates). After 4 hr, males were removed from the plate and
the plate was placed at 25�. The pha-1mutant worms are tem-
perature-sensitive and are not viable at 25�, so only the crossed
progeny grows at 25�. Three days later, we counted the plates
with worms that survived at 25�. To calculate mating potency,
we divided the number of cross progeny plates by the total
number of plates/males tested [mating potency % = (number
of plates/males with cross progeny / total number of plates/
males tested) 3 100]. For statistical analysis, we performed a
Student’s t-test to calculate the significant difference of mating
potency between wild-type worms (him-5) and mutant worms
(in a him-5 background).

Forbacking responseafternose touch,weplacedonevirgin
young adult male worm in a clean bacterial lawn and gently
touched its nose 10 times with an eyelash, waiting 10 sec
between each touch. The number of times the worm showed
response to nose touch by backward movement was scored
and the backing responsewas calculated [backing response=
(numberof times thewormbackedupafter nose touch/10nose
touches) 3 100]. For statistical analysis, we performed a Stu-
dent’s t-test to calculate the significant difference of backing
response between wild-type worms (him-5) andmutant worms
(in a him-5 background).

RnB synapse imaging

To visualize the presynaptic pattern of RnB neurons, z-stack
imagesofyoungadultmalescontainingPpkd-2::GFPandPpkd-2::
mCherry::RAB-3 reporters (bxIs30) were acquired using a Leica
SP5 confocal microscope. The z-stack images were analyzed one
by one from ventral to dorsal and compressed by looking at the
synaptic puncta located in the preanal ganglion. To quantify the
protein levels of mCherry::RAB-3, we performed a fluorescent
densitometry analysis of compressed z-stacks images acquired
by using a Zeiss Axioimager Z1 Apotome with a 633/1.4 objec-
tive. For this analysis, we used the same exposure time for all
control and mutant samples. The relative fluorescence values
were measured by dividing mCherry densitometry (correspond-
ing to synapses) by GFP densitometry (corresponding to axon
terminals). In this way, we corrected for missing synapses that
are a product of defects in axonal migration. For statistical anal-
ysis, we performed a Student’s t-test to calculate the significant
difference between control worms and mutant worms.

Tovisualize the synapsesbetweenRnBray sensoryneurons
and EF interneurons, we used the iBLINC (Biotin Labeling of

INtracellular Contacts) trans-synaptic biotin transfer system
(Desbois et al., 2015). For the presynaptic RnB sensory neuron
labeling, we expressed the biotin ligase with nrx-1 fusion pro-
tein (BirA::NRX-1) driven by the pkd-2/polycystin-2 promoter.
For the postsynaptic EF interneuron labeling, we expressed the
biotinylated acceptor peptide with an nlg-1/neuroligin fusion
protein (AP::NLG-1) driven by the nlg-1/neuroligin promoter.
We coexpressed these pre- and postsynaptic fusion proteins
with streptavidin::RFP (red fluorescence protein) fusion pro-
tein driven by the unc-122 coelomocyte promoter. To quantify
RnBs/ EF biotinylated synapses, we performed a fluorescent
densitometry analysis of compressed z-stack images acquired
frommutant andwild-type worms by using a Zeiss Axioimager
Z1 Apotomewith a 633/1.4 objective. Only thoseworms com-
pletely oriented in a dorsoventral position were imaged to
obtain a clear view of the synaptic ring located in the preanal
ganglion. The relative fluorescent [arbitrary unit (a.u.)] values
were the measurement of the RFP densitometry subtracted by
the background (noise). The measured area consists of a circle
with a 5-mm radius. To compare the difference in synaptic
densities between mutant and wild-type worms, we divided
the relative fluorescence (a.u.) value ofmutants by the average
of the relative fluorescence (a.u.) of wild-type worms mea-
sured on the same experimental day. For statistical analysis,
we performed a Student’s t-test to calculate the significant
difference between wild-type worms and mutant worms.

Data availability

All strains and reagents are available upon request. Supple-
mental Material, File S1, File S2, and File S3 comprise all data
used to create the figures. File S4 contains supplemental fig-
ures and tables. Figure S1 in File S4 shows the analysis of male
potency, response defects, and general backing response in the
hst-3.1/HS 3-O-sulfotransferase. Figure S2 in File S4 provides
additional genetic data pertaining to the genetic interactions
between hst-3.1/HS 3-O sulfotransferase, pkd-2/polycystin-2,
lov-1/polycystin-1, and klp-6/kinesin. Figure S3 in File S4 shows
expression data of the hst-3.1/HS 3-O-sulfotransferase transcrip-
tional reporter and nlg-1/neuroligin transcriptional GFP fusion.
Figure S4 in File S4provides additional genetic data pertaining to
the role ofHSMEs andHSPGs in the axonguidance of B-type ray
neurons. Figure S5 in File S4 provides additional information
about the visualization of the B-type ray neuron synapses with
the EF interneurons. Figure S6 in File S4 provides additional
genetic data pertaining to the quantification ofmCherry::RAB-
3 in the HSMEandHSPGmutants. Table S1 in File S4 provides
a complete list of strains created for this study. Tables S2 and
S3 in File S4 provide a complete list of transgenic strains, and
the respective constructs, created for this study.

Results

Genetic elimination of HS modification enzymes and
HSPGs causes behavioral defects in male mating

Behavior provides a sensitive readout of developmental or func-
tional disruptions. We conducted a response to hermaphrodite
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contact behavioral assay of male worms carrying null muta-
tions for the HSmodification enzymes. Response to hermaph-
rodite contact is the decision of a male worm to start mating
after contact by pressing its tail against the hermaphrodite
body while moving backward searching for the vulva (Figure
1A). We observed that males carrying a single mutation
in hst-2/HS 2-O-sulfotransferase, hse-5/HS C-5-epimerase,
and hst-3.1/HS 3-O-sulfotransferase showed deficiency in
response to contact. Loss of hst-2/HS 2-O-sulfotransferase
or hse-5/HS C-5-epimerase, which introduce 2-O-sulfation
and C-5 epimerization in the hexuronic acid of the linear
glycosaminoglycan HS chains, respectively, mildly affected
the response to hermaphrodite contact. Forty-five percent
of hst-2(ok595) and 55% of hse-5(tm472) mutant males
failed to respond after tail contact compared to a 10% failed
response in wild-type worms (Figure 1B). For mutants in
hst-3.1(tm734), which introduces 3-O-sulfation, 82% of the
hst-3.1(tm734) mutant males failed to respond (Figure 1B).
This reduction in response to contact results in a reduced
number of cross progeny (Figure S1A in File S4), demonstrat-
ing that the hst-3.1(tm734)mutant defect in response reduced
the overall ability to succeed in mating. Both response and
mating potency defects were rescued by a fosmid containing
the hst-3.1 locus (Figure 1C and Figure S1A in File S4). The
hst-3.1(tm734) mutant deficiencies in response behavior in-
volved a failure in backward movement after mate contact;
all nonresponsive mutant worms either failed to back-up after
hermaphrodite contact (52%) or showed a discontinued back-
wardmovement losing contact with the hermaphrodite (30%)
(Figure S1B in File S4). This defect in backward locomotion is
not caused by a general defect in backing behavior as hst-
3.1(tm734)mutant males did not show defects in the backing
response to nose touch (Figure S1C in File S4). However, since
hst-3.1(tm734) mutant worms showed severe defects in re-
sponse to contact, subsequent male mating behavior steps
were not examined.

The abnormal response to mate contact due to loss of 3-O-
sulation was specific for hst-3.1/HS 3-O-sulfotransferase,
since male worms of hst-3.2(tm3006), a null allele of the other
3-O-sulfatransferase, did not show defects in response after tail
contact during mating (Figure 1B). A double mutant for hst-
3.1 and hst-3.2 did not enhance the abnormal response phe-
notype of hst-3.1(tm734) single mutants, suggesting that
3-O-sulfation by hst-3.1/HS 3-O-sulfotransferase, but not
hst-3.2/HS 3-O-sulfotransferase, is required to mediate ma-
le mating behavior. On the other hand, hst-6/HS 6-O-sulfo-
transferase, which introduces 6-O-sulfation, does not serve
an individual role in response to hermaphrodite contact as
90% of hst-6(ok273)mutant males showed a response after
tail contact. Taken together, these results indicate that HS
molecules modified by hst-3.1/HS 3-O-sulfotransferase, hst-
2/HS 2-O-sulfotransferase, and hse-5/HS C-5-epimerase,
but not hst-6/HS 6-O-sulfotransferase, are required for re-
sponse to hermaphrodite contact by the male worm.

Since hst-3.1 is a 3-O-sulfotransferase that modifies the HS
chains on HSPGs, we wanted to determine which HSPG may

contain the epitope with 3-O sulfation that is required for
response to hermaphrodite contact. We tested mutants of
sdn-1/syndecan and the two forms of glypicans in the worm,
lon-2/glypican and gpn-1/glypican. The sdn-1(zh20)mutant
worms were not defective in response to hermaphro-
dite contact (Figure 1D). Single-mutant worms for lon-
2(e678) were significantly different from control worms
as 60% showed a response to contact compared to �90%
for control males. This lon-2 defect is not due to the ana-
tomical Lon phenotype as lon-1(e185) mutant males,
which have an elongated body similar to lon-2, did
not show defects in response to hermaphrodite contact
(Figure S1D in File S4). gpn-1(ok377) males were not
significantly different from control worms in their re-
sponse to hermaphrodites. However, the lon-2(e678)
gpn-1(ok377) double-mutant worms further enhanced
the defect observed in the lon-2 single mutants, indicating
that gpn-1 also has a function that promotes response
(Figure 1D).

To further determine if hst-3.1/HS3-O-sulfotransferase is
acting on the HS chains attached to lon-2/glypican and gpn-
1/glypican proteoglycans to regulate response behavior, we
constructed triple mutants for hst-3.1/HS 3-O-sulfotransferase,
lon-2/glypican, and gpn-1/glypican. The triple-mutant de-
fect was enhanced as compared to the hst-3.1/HS 3-O-
sulfotransferase single mutant (Figure 1D), suggesting that
LON-2/glypican and GPN-1/glypicans have further func-
tions in promoting response independent of 3-O-sulfation
by hst-3.1.

HS 3-O sulfation in the EF interneurons regulates male
response to hermaphrodite contact

To define the focus of action of the hst-3.1/HS 3-O-sulfotrans-
ferase in its role in response to contact during mating, we
expressed the hst-3.1/HS 3-O-sulfotransferase cDNA tissue-
specifically in neurons, muscles, and the hypodermis. When
we expressed hst-3.1/HS 3-O-sulfotransferase in neurons us-
ing the rgef-1 pan-neuronal promoter (prgef-1::hst-3.1), we
observed rescue of the abnormal response to contact pheno-
type (Figure 2, A–C). Similarly, when we expressed a hst-3.1/
HS 3-O-sulfotransferase cDNA in hypodermal tissue using
the dpy-7 promoter (pdpy-7::hst-3.1), we observed rescue of
themutant phenotype. However, whenwe expressed hst-3.1/
HS 3-O-sulfotransferase inmuscles using themyo-3 promoter
(pmyo-3::hst-3.1), we were not able to rescue the response
defect. These results suggest that the expression of hst-3.1/
HS 3-O-sulfotransferase in neurons or the hypodermis, but
not in muscles, is sufficient to regulate response behavior in
the male worms.

To further delineate the neuronal focus of action, we used
cell-specific promoters that drove expression of the hst-3.1/
HS 3-O-sulfotransferase cDNA in subsets of neurons in the
male tale. Cell ablation experiments indicated that the B-type
ray sensory neurons are essential for male mating behav-
ior, particularly for the response to hermaphrodite contact
and vulva location steps (Liu and Sternberg 1995; Barr and
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Sternberg 1999; Koo et al. 2011). By examining double mu-
tants, we found that genes such as pkd-2/polycystin-2, lov-1/
polycystin-1, and klp-6/kinesin, which act cell-autonomously
in RnB neurons to mediate the response to hermaphrodite
contact (Barr et al. 2001; Peden andBarr 2005), act genetically
in the same genetic pathway as hst-3.1/HS 3-O-sulfotransfer-
ase (Figure S2 in File S4). However, expression of hst-3.1/HS
3-O-sulfotransferase in B-type ray neurons by using the
pkd-2/polycystin-2 cell-specific promoter (ppkd-2::hst-3.1)
was not sufficient to rescue the abnormal response pheno-
type (Figure 2E). Therefore, to determine whether hst-3.1/
HS 3-O-sulfotransferase is acting downstream of the B-type
sensory neurons to regulate response, we expressed the hst-
3.1/HS 3-O-sulfotransferase cDNA in their main postsynaptic
partners. Based on the EM male connectivity data, the main
postsynaptic targets of RnB neurons are the EF(1–3), PVX,
PVY, PVV, PHC, and CP(7–8) male-specific interneurons
(Jarrell et al. 2012) (Figure 2D). In addition, PVX and
PVY are heavily connected to the AVA command interneuron,
and previous studies revealed that these three interneurons
are essential for the backup locomotion that triggers response
behavior after mate contact (Sherlekar et al. 2013). To express
hst-3.1/HS 3-O-sulfotransferase in the EF(1–3) interneurons,

we used an nlg-1/neuroligin promoter sequence (pnlg-1::hst-
3.1), since expression of nlg-1 in EF(1–3) interneurons has been
observed by using a transcriptional GFP fusion (Figure S3C
in File S4). Expression of hst-3.1/HS 3-O-sulfotransferase in
the EF(1–3) interneurons was sufficient to rescue the abnor-
mal phenotype in response, as �60% of the male worms
respondedwell after tail contact compared to 20% of response
in nontransgenic siblings. On the other hand, expression of
hst-3.1/HS 3-O-sulfotransferase cDNA in PVX, PVY, PVV,
PHC, and AVA interneurons was not sufficient to rescue the
abnormal response phenotype in mating behavior (Figure 2,
F–I). A previously published transcriptional reporter for
hst-3.1/HS 3-O-sulfotransferase (Tecle et al. 2013) is not
expressed in EF interneurons (or the hypodermis) and, consis-
tent with this observation, expression of the hst-3.1/HS 3-O-
sulfotransferase cDNA under the same promoter fails to rescue
the male mating defects in hst-3.1/HS 3-O-sulfotransferase
mutant males (Figure S3 in File S4). However, it only contains
�3 kb of sequences upstream of the starting codon and there-
fore may be missing key regulatory sequences for proper
expression of hst-3.1. For this reason, we cannot discard
the possibility that hst-3.1/ HS 3-O-sulfotransferase might be
expressed in the EF(1–3). Altogether, based on the heterologous

Figure 1 Heparan sulfate modification en-
zymes and heparan sulfate proteoglycans
are required for the response to hermaphro-
dite contact during male mating behavior.
(A) Schematic of the steps of male mating
behavior. (B and D) Quantification of the
response to hermaphrodite contact during
male mating behavior in the genotypes in-
dicated. Error bars denote the SEM; statisti-
cal significance is shown as follows: * P ,
0.05, ** P , 0.005, *** P , 0.0005, and
**** P , 0.00005. ns, not significant. The
data for control are identical (B–D) and
shown for comparison only. (C) Quantifica-
tion of a hst-3.1-containing fosmid rescue
of the response to hermaphrodite contact
during male mating behavior in the hst-
3.1(tm734) mutant. Error bars denote the
SEM; statistical significance is shown as fol-
lows: * P , 0.05, ** P , 0.005, *** P ,
0.0005, and **** P , 0.00005. ns, not sig-
nificant. The data for control and hst-3.1 are
identical to (B) and shown for comparison
only.
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expression of hst-3.1/HS 3-O-sulfotransferase, we suggest
that hst-3.1/HS 3-O-sulfotransferase acts in the EF(1–3) male-
specific interneurons, which are important postsynaptic targets
of B-type ray neurons, to regulate response behavior during
male mating.

Additionally,wetestedwhetherhst-3.1/HS3-O-sulfotransferase
could act in serotonergic, dopaminergic, glutamatergic, and
GABAergic neurons by expressing it with the tph-1 promoter

(ptph-1::hst-3.1), cat-2promoter (pcat-2::hst-3.1), eat-4promoter
(peat-4::hst-3.1), or unc-47 promoter (punc-47::hst-3.1), respec-
tively. Expression of hst-3.1 cDNA in serotonergic, dopaminergic,
and glutamatergic neurons did not rescue the abnormal response
phenotype (Figure 2, I–K). However, expression of hst-3.1 cDNA
in GABAergic neurons rescued the response to hermaphrodite
contact defects (Figure 2L). This is consistent with rescue in
GABAergic EF interneurons (Gendrel et al. 2016).

Figure 2 Heterologous transgenic rescue experiments. (A–C) Tissue-specific rescue of response to hermaphrodite contact during male mating behavior
in hst-3.1(tm734) mutants with hst-3.1 cDNA under heterologous promoters as indicated. Rescue was defined as restoration of response to hermaph-
rodite contact during male mating in transgenic animals (darker shade) and had to be statistically significant (P , 0.05) compared to nontransgenic
siblings (lighter shade) (n $ 12). (D) Main postsynaptic partners of RnB neurons. The arrows and numbers represent the weight of the synaptic input
from RnBs to the other neurons. (E–L) Cell-specific rescue of response to hermaphrodite contact during male mating behavior in hst-3.1(tm734)mutants
with hst-3.1 cDNA under heterologous promoters as indicated. Rescue was defined as restoration of response to hermaphrodite contact during male
mating in transgenic animals (darker shade) and had to be statistically significant (P, 0.05) compared to nontransgenic siblings (lighter shade) (n$ 12).
GABA, g-aminobutyric acid.
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HS 3-O sulfation is not required for axon guidance of
the B-type ray sensory neurons

Since HS molecules are mediators of axon guidance in many
neurons in C. elegans (Bülow and Hobert 2004; Kinnunen
et al. 2005; Bülow et al. 2008; Kinnunen 2014), we wanted
to determine whether the observed behavioral defects in hst-
3.1/HS 3-O-sulfotransferasemutant wormswere the result of
guidance defects of neurons involved in response behavior.
As previously mentioned, the B-type ray sensory neurons are
mediators of response to contact behavior and our findings
suggest that hst-3.1/HS 3-O-sulfotransferase is acting from
their main postsynaptic target, the EF interneurons, to medi-
ate this behavior. To determine whether 3-O sulfation
by HST-3.1/HS 3-O-sulfotransferase in the EF interneurons
is acting as a guidance cue to regulate axon migration, we
looked at B-type ray neuron axonal processes in hst-3.1/HS
3-O-sulfotransferase mutant worms. To visualize B-type ray
neuron processes, we used a cytoplasmic GFP reporter driven
by the pkd-2/polycystin-2 promoter. pkd-2/polycystin-2 en-
codes a transient receptor potential polycystic (TRPP) cation
channel that is expressed in three types of male-specific sen-
sory neurons: the RnBs, HOB, and the CEMs.

In wild-type worms, during the mid- to late-L4 stage,
ray neuron cell bodies migrate away from the posterior tail
hypodermis and enter the lumbar ganglion (Sulston et al.
1980) (Figure S4A in File S4). The axons migrate out of
the lumbar ganglion in a dorsoventral (DV) pathway, forming
four to five circumferential commissures. On the ventral side,
the axon terminals enter the preanal ganglion where they
contact their postsynaptic partners. In the case of R1B and
sometimes R2B, the axons first migrate in an anteroposterior
(AP) pathway, then changing to the DVmigration. Therefore,
defects in AP migration of B-type ray neurons result in an
anterior overextension of processes, while defects in DV mi-
gration result in the absence of commissures. As previously
reported (Jia and Emmons 2006), these migratory defects
are observed in mutant worms for the netrin signaling path-
way, where unc-6(ev400) and unc-40(e271) single mutants
showed 30 and 47%, respectively, of defects in AP migration,
while both mutants showed 100% of defects in DV migra-
tion (Figure 3). Interestingly, other HS modifications such
as 2-O sulfation, 6-O sulfation, and 5-C epimerization medi-
ate B-type ray neuron axon guidance, as defects are observed
in both AP and DV migratory pathways of hst-2(ok595), hst-
6(ok273), and hse-5(tm472) single-mutant worms (Figure
S4, C and D in File S4). In addition, SDN-1 is a regulator of
B-type ray neuron axon guidance as defects in both AP and
DV migration were observed in sdn-1(zh20) single mutants.
The hst-6(ok273) hst-2(ok595) and lon-2(e678) sdn-1(zh20)
double mutants showed highly penetrant AP and DV migra-
tion defects. In fact, the DV migration defects of these double
mutants are comparable to those observed in netrin signaling
mutants, suggesting that HS molecules and their distinct HS
modification patterns regulate B-type ray neuron axon guid-
ance through the unc-6/netrin ligand system (Figure 3 and
Figure S4, C–F in File S4).

In contrast, the axon morphology of B-type ray neurons in
hst-3.1(tm734) single-mutant worms was indistinguishable
from control worms, with no defects observed in the AP or
DV axon migration of RnB neurons (Figure 3). The same
results were obtained when we examined the lon-2 gpn-1
double mutants, which are also defective for response be-
havior, where no defects in RnB neuron AP or DV axon
migration were observed. These results suggest that the
defects in response to hermaphrodite behavior in hst-3.1/
HS 3-O-sulfotransferase and glypican mutants are not a
consequence of defective axonal projections of B-type ray
neuron function. Taken together, our analysis of the roles of
HS molecules in axon guidance suggests that specific HS
modifications are required for axonal migration of B-type
ray neurons, whereas, 3-O sulfation by HST-3.1/HS 3-O-
sulfotransferase is not required for this process but may
rather serve different functions.

HS 3-O sulfation mediates synapse formation of B-type
ray sensory neurons

The observation that hst-3.1/HS 3-O-sulfotransferase mu-
tants are defective in response to contact behavior during
male mating, but do not display any obvious defects in
axonal projections, prompted us to investigate whether
HS 3-O sulfation is regulating the synaptic function of
the response circuits. To examine the possibility that hst-
3.1/HS 3-O-sulfotransferase is affecting synapse formation
of B-type ray neurons, we investigated the presynaptic den-
sities of mutant worms using the mCherry::RAB-3 reporter
expressed under the control of the pkd-2/polycystin-2 pro-
moter. rab-3 encodes a member of the Ras GTPase super-
family that localizes to presynaptic vesicles. To study RnB
synapses, we used a confocal microscope and analyzed the
synaptic pattern of compressed z-stacks containing all the
RnB synapses located in the preanal ganglion. We looked at
the synapses of young adult male worms (64 hr after hatch-
ing) because by this time most B-type ray neuron synapses
are formed (Figure S5A in File S4). Based on the presynaptic
puncta distribution in the preanal ganglion, the presynaptic
density patterning of hst-3.1/HS 3-O-sulfotransferase mu-
tant males was similar in morphology to that of control
worms, suggesting that the elimination of hst-3.1/HS 3-O-
sulfotransferase does not affect the distribution of B-type
ray neuron presynaptic sites (Figure 4B). However, we found
that the mCherry::RAB-3 levels are accumulated above control
levels (Figure 4C).

To quantify the levels of mCherry::RAB-3 in synapses, we
performed a densitometry analysis of compressed z-stack im-
ages containing all RnB synapses in the preanal ganglion. For
this analysis, we used the same exposure times for mutants
and control worms. To control for transgene variability, we
normalized by using a cytoplasmic GFP expressed from the
same transgene and promoter. We observed that hst-3.1/HS
3-O-sulfotransferase mutants have a mCherry relative fluo-
rescence of 1.47 6 0.11 compared to 1 6 0.03 in control
worms (Figure 4D).
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The mCherry::RAB-3 levels in the B-type neuron synapses
of lon-2 gpn-1 double-mutant worms have a similar accumu-
lation of RAB-3, with a relative fluorescence of 1.71 6 0.13
compared to 1 6 0.03 in control worms (Figure 4D). The lon-
2(e678) single-mutant worms, which are defective for response
to contact, also showed increased levels of RAB-3 in B-type ray
neuron synapses when compared to control (Figure 1D and
Figure S6B in File S4).

Interestingly,mutantworms for the otherHSMEwith defects
in male mating behavior, hse-5(tm472), also showed higher

mCherry::RAB-3 accumulation levels significantly different to
those of control worms (Figure 1B and Figure S6A in File S4).
However, given that thesemutants are also defective in axon guid-
ance (Figure S4, C and D in File S4), the observed behavioral
defectsmight be due to axonmisrouting rather than synaptic func-
tion, as seems to be the case for hst-3.1/HS 3-O-sulfotransferase.
Finally, hst-3.2(tm3006) and hst-6(ok273)mutant worms did not
showdefects in themCherry::RAB-3 accumulation in synapses, nor
did they show a defect in response to contact behavior (Figure 1B
and Figure S6A in File S4). The single and double HSPG mutants

Figure 3 HST-3.1/HS 3-O-sulfotransferase is not required for axon guidance of B-type ray neurons. (A) Ventral views with schematics (i–vi) of adult male
animals showing the B-type ray neurons. B-type ray neurons were visualized with bxIs14 (Is[Ppkd-2::GFP]). Red arrows represent missing commissures.
Anterior is to the left. (B and C) Quantification of B-type ray neurons anteroposterior and dorsoventral axon guidance in the genotypes indicated. Error
bars denote the SEM; statistical significance is shown as follows: * P , 0.05, ** P , 0.005, *** P , 0.0005, and **** P , 0.00005. ns, not significant.
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suchas sdn-1(zh20),gpn-1(ok377),unc-52(e998), lon-2 sdn-1, and
sdn-1 gpn-1, did not show different levels of accumulation of
mCherry::RAB-3 in presynaptic sites compared to control worms
(Figure S6B in File S4).

The abnormal mCherry::RAB-3 accumulation observed in
B-type ray neurons of hst-3.1/HS 3-O-sulfotransferase and

lon-2 gpn-1mutant worms suggests a synaptic disruption be-
tween these neurons and their postsynaptic partners. To ex-
amine this possibility, we used the iBLINC system to label the
specific synapses between B-type ray neurons and EF inter-
neurons. The iBLINC method consists of an enzymatic trans-
synaptic transfer reaction of biotin from a presynaptic cell

Figure 4 HST-3.1/HS 3-O-sulfotransferase regu-
lates presynaptic organization and synapse formation
of B-type ray neurons. (A) Schematic of a ventral view
showing the imaged region containing the synaptic
ring in the preanal ganglion. (B) Confocal ventral
views of the presynaptic densities as labeled with
mCherry::RAB-3 of adult male animals in control
and hst-3.1 mutant. The B-type ray neuron presyn-
aptic distribution is not affected in hst-3.1/HS 3-O-
sulfotransferase mutants. (C) Ventral views of the
RnB axonal processes in the synaptic ring located in
the preanal ganglion with cytosolic GFP and its cor-
responding presynaptic densities as labeled with
mCherry::RAB-3 of adult hst-3.1(tm734) single mu-
tants and lon-2gpn-1 double-mutant male worms.
B-type ray neurons were visualized with bxIs30 that
contains the cytosolic GFP (Is[Ppkd-2::GFP]) and the
presynaptic marker (Is[Ppkd-2::mCherry::RAB-3]). An-
terior is to the left. (D) Quantification of mCherry::
RAB-3 fluorescence in the preanal ganglion synaptic
ring in the genotypes indicated. Error bars denote
the SEM; statistical significance is shown as follows:
* P , 0.05, ** P , 0.005, *** P , 0.0005, and
**** P , 0.00005. ns, not significant. The data
presented is a ratio of mCherry::RAB-3 to GFP and
control value. (E) Ventral views of trans-synaptic bio-
tinylation labeling (iBLINC) of RnB/ EFs synapses in
puncta in hst-3.1(tm734) single mutants and lon-
2gpn-1 double mutants. (F) The data presented is
the normalized red fluorescence protein density in
the synaptic area. Error bars denote the SEM; statis-
tical significance is shown as follows: * P, 0.05, **
P , 0.005, *** P , 0.0005, and **** P ,
0.00005. ns, not significant.
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adhesion protein to apostsynapticmolecule (Desbois et al.2015).
The biotinylated postsynaptic site is detected by streptavidin::
fluorescent protein, thereby labeling the synapse (Figure S5B
in File S4). For the B-type ray neurons, we expressed a
BirA ligase fused N-terminally to NRX-1/neurexin driven by
the pkd-2/polycystin-2 promoter. For the EF interneurons, we
expressed an acceptor peptide AP fused N-terminally to NLG-
1/neuroligin driven by the nlg-1/neuroligin promoter. Using
iBLINC, we found that hst-3.1(tm734)mutants show less syn-
aptic labeling compared to control worms, suggesting smaller
or fewer synapses between RnBs and the EF neurons. Control
worms have a relative fluorescence of 16 0.05, while the hst-
3.1(tm734) mutants have a relative fluoresce of 0.26 6 0.03
(Figure 4, E and F). Moreover, lon-2 gpn-1 double-mutant
worms also showed less synaptic labeling than control worms
with a relative fluorescence of 0.75 6 0.05. Altogether, our
synaptic and behavioral results suggest that HS 3-O sulfation
is involved in the process of synapse formation, which in turn
may affect the synaptic function of the connection between
B-type ray neurons and EF interneurons, resulting in the de-
fects in response behavior during male mating.

HST-3.1/HS 3-O-sulfotransferase and the glypicans LON-
2/glypican and GPN-1/glypican genetically interact with
synaptic molecules

The process of synapse formation is thought to be mediated
by the interaction of cell adhesion molecules located in the
presynaptic and postsynaptic sites. Such is the case for presyn-
aptic neurexin and postsynaptic neuroligin adhesion molecules,
whichhavebeen implicated insynaptogenicactivityandsynapse
maturation (Scheiffele et al. 2000; Graf et al. 2004; Südhof
2008). We found that nrx-1/neurexin null mutants exhibited
defects in response to contact during male mating similar to the
defects observed in hst-3.1/HS 3-O-sulfotransferase mutant
worms (Figure 5A). nlg-1/neuroligin mutants, by contrast, did
not show defects in response to contact behavior. To investigate
whether hst-3.1 still retained a function in the absence of nrx-1
function, we constructed hst-3.1; nrx-1 double mutants. We
found that the hst-3.1; nrx-1 double mutant further enhanced
the defects observed in both single mutants, thus suggest-
ing that these genes act in parallel genetic pathways (while
not excluding the possibility that they act in the same path-
way given the strong phenotype observed in the hst-3.1/HS
3-O-sulfotransferase single mutant) (Figure 5A). The hst-
3.1; nlg-1 double mutants suppressed the defect in response
to contact during male mating observed in the hst-3.1 single
mutant, consistent with a parallel, hst-3.1-independent path-
way (Figure 5A). We next examined hst-3.1; nrx-1; nlg-1 tri-
ple-mutant worms in response behavior and observed that, in
the absence of nrx-1/neurexin, nlg-1/neuroligin no longer
suppresses the hst-3.1-dependent response defects, showing
that nrx-1/neurexin is epistatic and suggesting that nlg-1 acts
to suppress the activity of nrx-1. To further investigate the
nlg-1/neuroligin suppression of the HS-independent defects
in response behavior, we constructed triple mutants for
nlg-1/neuroligin and the two glypicans, lon-2/glypican and

gpn-1/glypican, as lon-2 gpn-1 double mutants also showed
defects in response behavior. The nlg-1 lon-2 gpn-1 triple mu-
tants did not show defects in response to contact, thus in-
dicating that nlg-1/neuroligin also suppresses the defects of
lon-2 gpn-1 double mutants, consistent with the suppression
observed for hst-3.1/HS 3-O-sulfotransferase mutants (Figure
5A). Together, these results suggest that nrx-1/neurexin and
nlg-1/neuroligin adhesion, possibly through opposing roles,
are involved in promoting response behavior in a pathway par-
allel to that in which hst-3.1/HS 3-O-sulfotransferase and the
glypicans act.

To determine whether the genetic interaction of these
molecules is also regulating synapse formation, we examined
the presynaptic levels of mCherry::RAB-3 in B-type ray sen-
sory neurons in the same series of nrx-1/neurexin and nlg-1/
neuroligin double- and triple-mutantworms. Thehst-3.1; nrx-1
mutants showed an increased accumulation of mCherry::RAB-
3; however, the increase in accumulation was not significantly
different from hst-3.1/HS 3-O-sulfotransferase single-mutant
worms (Figure 5B). Considering that hst-3.1; nrx-1 double-mu-
tant defects in behavior are significantly more severe than the
defects in hst-3.1/HS 3-O-sulfotransferase single mutants,
we conclude that either it is difficult to detect an even higher
accumulation of mCherry::RAB-3 as measured by the relative
fluorescence densities, or that nrx-1-dependent behavioral de-
fects result from a disruption in another synaptic connection.

Consistent with the behavioral results, the hst-3.1; nlg-1
doublemutant suppressed themCherry::RAB-3 accumulation in
the presynaptic cell, decreasing it to control levels (Figure 5B).
As we observed in response behavior, the hst-3.1; nrx-1; nlg-1
triple mutants showed an increased accumulation ofmCherry::
RAB-3 that was not suppressed by nlg-1/neuroligin, consistently
indicating that, in the absence of nrx-1, nlg-1 does not suppress
the hst-3.1/HS 3-O-sulfotransferase-induced defects in B-type
ray neuron presynaptic sites. Lastly, nlg-1 lon-2 gpn-1 triple mu-
tants showed mCherry::RAB-3 levels comparable to those of
control worms, again mirroring the genetic interactions ob-
served for the male mating behavior.

Discussion

How neuronal connectivity determines behavioral output in
an organism remains one of the biggest questions in the
neuroscience field. To address this question, one important
aspect is to investigate the roles of molecules in the ECM that
are involved in establishing and making these connections
functional. In this work, we used male mating behavior in
C. elegans as a readout of synaptic function, together with
fluorescence labeling of synapses, to study the role of HS mol-
ecules in the formation of the male nervous system and its
synaptic connectivity.

HS molecules mediate male mating behavior in
C. elegans

We found that hst-3.1/HS3-O-sulfotransferase is acting in the
same genetic pathway as pkd-2/polycystin-2, lov-1/polycystin-1,
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and klp-6/kinesin to regulate the response to contact behavior
during male mating. However, the hst-3.1/HS 3-O-sulfotransfer-
ase focus of action is not the B-type ray neurons, but rather the

downstream EF male-specific interneurons or the hypodermis.
Based on the double-mutant defects, theHSPGs LON-2/glypican
andGPN-1/glypicanact in parallel tomediate response behavior.
Since it has been shown that gpn-1/glypican is expressed in
neurons (Hudson et al. 2006) and lon-2/glypican acts in the
hypodermis to mediate different aspects of neuronal develop-
ment (Pedersen et al. 2013), we propose that the response to
contact behavior is mediated by 3-O sulfation to the HSs at-
tached to GPN-1/glypican in neurons, and 3-O sulfation to
the HSs attached to LON-2/glypican in the hypodermis. Even
though glypicans possess a GPI anchor, it has been shown
that LON-2/glypicans can be shed from epidermal cells, se-
creted, and diffused into the ECM, where they interact with
components of Netrin signaling to mediate axon guidance
(Blanchette et al. 2015).

Interestingly, only 3-O-sulfation by hst-3.1/HS 3-O-sulfo-
transferase, and not hst-3.2/HS 3-O-sulfotransferase, is reg-
ulating the mating process. The opposite specificity for the
3-O sulfotransferases was identified in the neurite branching
induced due to overexpression of the cell adhesion molecule
KAL-1/Anosmin 1 in the AIY interneuron (Bülow et al. 2002).
In this context, the kal-1-induced branches in AIY were sup-
pressed in the hst-3.2mutant, but not in the hst-3.1/HS 3-O-
sulfotransferase mutant (Tecle et al. 2013), thus providing
further evidence that both HS 3-O-sulfotransferase might dis-
play different substrate specificities or expression patterns
(Moon et al. 2012).

It has been shown that the EF interneurons are important
for male exploratory behavior, which is essential for males to
localize to and contact their mating partners (Barrios et al.
2008). In terms of connectivity, their main synaptic input is
from the B-type ray sensory neurons, while their main synaptic
output is onto the AVB premotor interneuron (S. J. Cook, C. A.
Brittin, T. A. Jarrell, Y. Wang, A. E. Bloniarz, personal commu-
nication). Previous cell ablation studies have shown that the
EF interneuronsmediate backward locomotion aftermate con-
tact (Sherlekar 2015), which is necessary for the response to
contact behavior. Because AVB is the premotor interneuron
that promotes forward movement in the locomotion circuit,
while EF ablation promotes forward movement after mate
contact, it is thought that the EF / AVB connections are in-
hibitory synapses. Our findings support this hypothesis, given
that hst-3.1/HS 3-O-sulfotransferase is acting in the EFs to
regulate response behavior, and the hst-3.1/HS3-O-sulfotrans-
ferasemutants have defects in backward locomotion after con-
tacting the hermaphrodite.

HS 3-O sulfation regulates synapse formation of male
mating neurons

Our findings, together with previously published studies,
demonstrate that HSs are mediators of synapse development
and function. In this work, we identify a HS motif with 3-O-
sulfation likely attached to the HSPG LON-2/glypican and/or
GPN-1/glypican, which is required for synaptogenesis. Our
observations conceptually extend studies in cultured hippo-
campal neurons, where the LRRTM4’s synaptogenic activity

Figure 5 nrx-1/neurexin and nlg-1/neuroligin interacts genetically with
hst-3.1/HS 3-O-sulfotransferase for response to hermaphrodite contact
and synaptic function. (A) Quantification of response to hermaphrodite con-
tact during male mating behavior in the genotypes indicated. Error bars de-
note the SEM; statistical significance is shown as follows: * P, 0.05, ** P,
0.005, *** P, 0.0005, and **** P, 0.00005. ns, not significant. The data
for control and hst-3.1/ HS 3-O-sulfotransferase are identical to Figure 1 and
shown for comparison only. (B) Quantification of mCherry::RAB-3 fluores-
cence in the preanal ganglion synaptic ring in the genotypes indicated. The
data presented is a ratio of mCherry::RAB-3 to GFP and control (Norm) value.
Error bars denote the SEM; statistical significance is shown as follows: * P ,
0.05, ** P , 0.005, *** P , 0.0005, and **** P , 0.00005. ns, not
significant. The data for control and hst-3.1/HS 3-O-sulfotransferase are iden-
tical to Figure 4 and shown for comparison only.
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requires the presence of HSs (de Wit et al. 2013), by estab-
lishing that specific HS modification patterns are important
for this process. Moreover, they showed that glypican acts as
a receptor for LRRTM4, and their interaction is important for
the development of excitatory synapses.

Through the analysis of null mutations, we demonstrate
that the elimination of hst-3.1/HS 3-O-sulfotransferase and
the two glypican forms, lon-2/glypican and gpn-1/glypican,
induces defects in the presynaptic specialization of B-type ray
neurons, while it reduces the iBLINC synaptic labeling of
RnBs / EF synapses, indicating their role in the process of
synapse formation. The observation that the accumulation
levels of the presynaptic marker RAB-3 in B-type ray neurons
is higher in hst-3.1/HS 3-O-sulfotransferase mutants than in
control worms suggests that vesicle fusion is not occurring
properly at the synapse. The higher levels of RAB-3 can be
explained by a change in the size and morphology of the
synaptic puncta rather than an increase in their number. This
is further supported by the fact that the presynaptic pattern of
B-type ray neurons in the preanal ganglion of mutant worms is
comparable to the one observed in control worms. In addition,
using the iBLINC-labeling system, we showed that hst-3.1/HS
3-O-sulfotransferase mutants and lon-2 gpn-1 double mutants
form fewer RnB/ EFs synapses. In terms of synaptic function,
from our results, we argue that the observed hst-3.1/HS 3-O-
sulfotransferase and lon-2 gpn-1 defects in response behavior
duringmating are a reflection of the observed defects in synapse
formation.

The HS 3-O sulfation regulation during the neuronal de-
velopment of B-type ray sensory neurons seems to be specific
for the process of synapse formation as no defects were ob-
served in the axon morphology of these mating neurons. A
similar role of HS molecules in the process of synapse forma-
tion has been previously reported in mammals, where ext1
conditional knockout inmice results in autism-like behavioral
phenotypes due to abnormal functioning of glutamatergic
synapses, while no detectable morphological defects were
observed in the brain (Irie et al. 2012). Even though there
is no involvement of HS 3-O-sulfation in the process of B-type
ray neuron axon guidance, we found that other HS modifica-
tions such as 2-O-sulfation, 6-O-sulfation, and C-5 epimeriza-
tion mediate anteroposterior and dorsoventral axon guidance
pathways by acting in parallel genetic pathways. This is con-
sistent with previous findings that demonstrate the variable
function of distinct HS modification patterns in the neuronal
developmental of different cell types (Saied-Santiago et al.
2017). The simultaneous knockdown of three proteoglycans,
sdn-1/syndecan, lon-2/glypican, and gpn-1/glypican, severely
affected the axon guidance of B-type ray neurons, demonstrat-
ing that they act redundantly in this process, as is the case for
other processes such as KAL-1/Anosmin 1-induced neurite
branching in the AIY interneuron (Díaz-Balzac et al. 2014).
In the context of dorsoventral migration of B-type neurons,
genetic elimination of HS molecules causes similar defects to
unc-6/netrin ligand and its unc-40/DCC (Deleted in Colorectal
Carcinoma) surface receptor, indicating that HSs may regulate

axon guidance through the netrin signaling pathway.However,
the mechanism by which this is accomplished remains elusive.
Plausible possibilities include ligand sequestration, the modu-
lation of ligand–receptor interaction, or a function of HSPGs as
coreceptors (Blanchette et al. 2015; Díaz-Balzac et al. 2015;
Poulain and Yost 2015). Future experiments should distin-
guish between these possibilities.

We have also shown that the neural cell adhesion proteins
neurexin and neuroligin play a role in the formation of
synapses by the RnB neurons. Neurexin promotes synapse
formation while neuroligin opposes the function of neurexin.
Interestingly, Hart and Hobert (2018) recently found a sim-
ilar novel, antagonistic role for these proteins in synapse for-
mation elsewhere in the C. elegansmale mating circuits. This
neurexin/neuroligin pathway is, to some extent, independent of
the pathway inwhich hst-3.1/HS 3-O-sulfotransferase functions
as each gene retains some function in null mutants of the other
(Figure 6). In fact, in the absence of the inhibitory function of
neuroligin, it appears that the synapse-promoting function of
neurexin can fully restore synapse formation and function in the
absence of hst-3.1/HS 3-O-sulfotransferase (Figure 5). These
results indicating multiple independent pathways promoting
synapse formation point out the complexity of the process and
help us to understand how specificity and robustness are
achieved.
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